Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Immune Network ; : e25-2020.
Article | WPRIM | ID: wpr-835460

ABSTRACT

Acinetobacter baumannii is known for its multidrug antibiotic resistance. New approaches to treating drug-resistant bacterial infections are urgently required. Cathelicidin-related antimicrobial peptide (CRAMP) is a murine antimicrobial peptide that exerts diverse immune functions, including both direct bacterial cell killing and immunomodulatory effects. In this study, we sought to identify the role of CRAMP in the host immune response to multidrug-resistant Acinetobacter baumannii. Wild-type (WT) and CRAMP knockout mice were infected intranasally with the bacteria. CRAMP−/− mice exhibited increased bacterial colony-forming units (CFUs) in bronchoalveolar lavage (BAL) fluid after A. baumannii infection compared to WT mice. The loss of CRAMP expression resulted in a significant decrease in the recruitment of immune cells, primarily neutrophils. The levels of IL-6 and CXCL1 were lower, whereas the levels of IL-10 were significantly higher in the BAL fluid of CRAMP−/− mice compared to WT mice 1 day after infection. In an in vitro assay using thioglycollate-induced peritoneal neutrophils, the ability of bacterial phagocytosis and killing was impaired in CRAMP−/− neutrophils compared to the WT cells. CRAMP was also essential for the production of cytokines and chemokines in response to A. baumannii in neutrophils. In addition, the A. baumannii-induced inhibitor of κB-α degradation and phosphorylation of p38 MAPK were impaired in CRAMP−/− neutrophils, whereas ERK and JNK phosphorylation was upregulated. Our results indicate that CRAMP plays an important role in the host defense against pulmonary infection with A. baumannii by promoting the antibacterial activity of neutrophils and regulating the innate immune responses.

2.
Immune Network ; : e13-2019.
Article in English | WPRIM | ID: wpr-740215

ABSTRACT

6-kDa early secretory antigenic target (ESAT6), a virulent factor of Mycobacterium tuberculosis, is involved in immune regulation. However, the underlying mechanism behind the activation and maturation of dendritic cells (DCs) by ESAT6 remains unclear. In this study, we investigated the effect on TLRs signaling on the regulation of ESAT6-induced activation and maturation of DCs. ESAT6 induced production of IL-6, TNF-α, and IL-12p40 in bone marrow-derived dendritic cells (BMDCs) from wild-type and TLR2-deficient mice, with this induction abolished in TLR4-deficient cells. NF-κB is essential for the ESAT6-induced production of the cytokines in BMDCs. TLR4 was also required for ESAT6-induced activation of NF-κB and MAPKs in BMDCs. ESAT6 additionally upregulated the expression of surface molecules CD80, CD86, and MHC-II, and also promoted the ability of CD4⁺ T cells to secrete IFN-γ via the TLR4-dependent pathway. Our findings suggest that TLR4 is critical in the activation and maturation of DCs in response to ESAT6.


Subject(s)
Animals , Mice , Cytokines , Dendritic Cells , Interleukin-12 Subunit p40 , Interleukin-6 , Mycobacterium tuberculosis , Mycobacterium , T-Lymphocytes , Toll-Like Receptor 4
3.
Laboratory Animal Research ; : 295-301, 2018.
Article in English | WPRIM | ID: wpr-718837

ABSTRACT

Nucleotide-binding domain 1 (Nod1) is a cytosolic receptor that is responsible for the recognition of a bacterial peptidoglycan motif containing meso-diaminophimelic acid. In this study, we sought to identify the role of Nod1 in host defense in vivo against pulmonary infection by multidrug resistant Acinetobacter baumannii. Wildtype (WT) and Nod1-deficient mice were intranasally infected with 3×107 CFU of A. baumannii and sacrificed at 1 and 3 days post-infection (dpi). Bacterial CFUs, cytokines production, histopathology, and mouse β-defensins (mBD) in the lungs of infected mice were evaluated. The production of cytokines in response to A. baumannii was also measured in WT and Nod1-deficient macrophages. The bacterial clearance in the lungs was not affected by Nod1 deficiency. Levels of IL-6, TNF-α, and IL-1β in the lung homogenates were comparable at days 1 and 3 between WT and Nod1-deficient mice, except the TNF-α level at day 3, which was higher in Nod1-deficient mice. There was no significant difference in lung pathology and expression of mBDs (mBD1, 2, 3, and 4) between WT and Nod1-deficient mice infected with A. baumannii. The production of IL-6, TNF-α, and NO by macrophages in response to A. baumannii was also comparable in WT and Nod1-deficient mice. Our results indicated that Nod1 does not play an important role in host immune responses against A. baumannii infection.


Subject(s)
Animals , Mice , Acinetobacter baumannii , Acinetobacter , Cytokines , Cytosol , Interleukin-6 , Lung , Macrophages , Pathology , Peptidoglycan
SELECTION OF CITATIONS
SEARCH DETAIL